SOC 2 Compliance for AI Startups: A Practical Implementation Guide
For AI startups handling customer data, SOC 2 compliance has become a prerequisite for enterprise sales. This guide provides a practical roadmap for achieving SOC 2 Type II certification with AI-specific considerations.
Understanding SOC 2 Trust Service Criteria
SOC 2 evaluates your organization against five Trust Service Criteria (TSC). For AI companies, each criterion has unique implications.
Security (Common Criteria)
The security criterion forms the foundation of SOC 2 compliance:
# Security Controls Framework for AI Systems
security_controls:
access_management:
- identity_verification
- role_based_access_control
- privileged_access_management
- multi_factor_authentication
ai_specific_controls:
- model_access_restrictions
- training_data_access_logs
- inference_api_authentication
- model_versioning_security
network_security:
- firewall_configurations
- intrusion_detection
- network_segmentation
- encrypted_communications
endpoint_security:
- antivirus_protection
- device_encryption
- mobile_device_management
- patch_managementAvailability
Ensuring system availability for AI services:
# availability_monitoring.py
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import List, Optional
import asyncio
@dataclass
class AvailabilityMetrics:
service_name: str
uptime_percentage: float
mttr: timedelta # Mean Time To Recovery
mtbf: timedelta # Mean Time Between Failures
incidents: List[dict]
class AIServiceAvailabilityMonitor:
def __init__(self, sla_target: float = 99.9):
self.sla_target = sla_target
self.services = {}
async def monitor_ai_services(self):
"""Monitor availability of AI-specific services."""
ai_services = [
"inference_api",
"training_pipeline",
"model_registry",
"feature_store",
"monitoring_dashboard"
]
results = {}
for service in ai_services:
results[service] = await self.check_service_health(service)
return self.calculate_composite_availability(results)
async def check_service_health(self, service: str) -> dict:
"""Health check for individual service."""
checks = {
"inference_api": self._check_inference_health,
"training_pipeline": self._check_training_health,
"model_registry": self._check_registry_health,
"feature_store": self._check_feature_store_health,
"monitoring_dashboard": self._check_monitoring_health
}
checker = checks.get(service)
if checker:
return await checker()
return {"status": "unknown", "latency_ms": None}
async def _check_inference_health(self) -> dict:
"""Check inference API health with latency measurement."""
start = datetime.now()
# Simulate health check
await asyncio.sleep(0.01)
latency = (datetime.now() - start).total_seconds() * 1000
return {
"status": "healthy" if latency < 100 else "degraded",
"latency_ms": latency,
"model_loaded": True,
"gpu_available": True,
"queue_depth": 5
}
def calculate_composite_availability(self, results: dict) -> float:
"""Calculate weighted availability score."""
weights = {
"inference_api": 0.4,
"training_pipeline": 0.2,
"model_registry": 0.15,
"feature_store": 0.15,
"monitoring_dashboard": 0.1
}
total = 0
for service, result in results.items():
if result.get("status") == "healthy":
total += weights.get(service, 0) * 100
elif result.get("status") == "degraded":
total += weights.get(service, 0) * 50
return totalProcessing Integrity
Ensuring AI outputs are accurate and complete:
# processing_integrity.py
import hashlib
import json
from datetime import datetime
from typing import Any, Dict, Optional
class AIProcessingIntegrityValidator:
"""Validate processing integrity for AI systems."""
def __init__(self):
self.validation_log = []
def validate_inference_request(
self,
request_id: str,
input_data: Dict[str, Any],
model_version: str
) -> Dict[str, Any]:
"""Validate and log inference request."""
validation_result = {
"request_id": request_id,
"timestamp": datetime.utcnow().isoformat(),
"model_version": model_version,
"input_hash": self._hash_data(input_data),
"validations": []
}
# Input validation checks
checks = [
self._validate_input_format(input_data),
self._validate_input_bounds(input_data),
self._validate_input_completeness(input_data),
self._validate_model_compatibility(input_data, model_version)
]
validation_result["validations"] = checks
validation_result["is_valid"] = all(c["passed"] for c in checks)
self.validation_log.append(validation_result)
return validation_result
def validate_inference_output(
self,
request_id: str,
output_data: Dict[str, Any],
expected_schema: Dict[str, Any]
) -> Dict[str, Any]:
"""Validate inference output integrity."""
validation_result = {
"request_id": request_id,
"timestamp": datetime.utcnow().isoformat(),
"output_hash": self._hash_data(output_data),
"validations": []
}
# Output validation checks
checks = [
self._validate_output_schema(output_data, expected_schema),
self._validate_confidence_bounds(output_data),
self._validate_output_completeness(output_data),
self._check_anomalous_output(output_data)
]
validation_result["validations"] = checks
validation_result["is_valid"] = all(c["passed"] for c in checks)
return validation_result
def _hash_data(self, data: Any) -> str:
"""Create deterministic hash of data."""
serialized = json.dumps(data, sort_keys=True)
return hashlib.sha256(serialized.encode()).hexdigest()
def _validate_input_format(self, data: Dict) -> Dict:
"""Check input data format."""
return {
"check": "input_format",
"passed": isinstance(data, dict) and len(data) > 0,
"details": "Input must be non-empty dictionary"
}
def _validate_input_bounds(self, data: Dict) -> Dict:
"""Check numerical inputs are within bounds."""
# Implementation specific to your model
return {
"check": "input_bounds",
"passed": True,
"details": "All numerical inputs within acceptable range"
}
def _validate_input_completeness(self, data: Dict) -> Dict:
"""Check all required fields present."""
required_fields = ["features", "metadata"]
missing = [f for f in required_fields if f not in data]
return {
"check": "input_completeness",
"passed": len(missing) == 0,
"details": f"Missing fields: {missing}" if missing else "All required fields present"
}
def _validate_model_compatibility(self, data: Dict, model_version: str) -> Dict:
"""Check input compatible with model version."""
return {
"check": "model_compatibility",
"passed": True,
"details": f"Input compatible with model {model_version}"
}
def _validate_output_schema(self, output: Dict, schema: Dict) -> Dict:
"""Validate output matches expected schema."""
return {
"check": "output_schema",
"passed": True,
"details": "Output matches expected schema"
}
def _validate_confidence_bounds(self, output: Dict) -> Dict:
"""Check confidence scores are valid."""
confidence = output.get("confidence", 0)
valid = 0 <= confidence <= 1
return {
"check": "confidence_bounds",
"passed": valid,
"details": f"Confidence {confidence} {'within' if valid else 'outside'} [0,1]"
}
def _validate_output_completeness(self, output: Dict) -> Dict:
"""Check output contains all expected fields."""
required = ["prediction", "confidence", "model_version"]
missing = [f for f in required if f not in output]
return {
"check": "output_completeness",
"passed": len(missing) == 0,
"details": f"Missing: {missing}" if missing else "Complete"
}
def _check_anomalous_output(self, output: Dict) -> Dict:
"""Detect potentially anomalous outputs."""
return {
"check": "anomaly_detection",
"passed": True,
"details": "Output within normal distribution"
}Confidentiality
Protecting confidential AI training data and models:
# confidentiality_controls.py
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
import base64
import os
from typing import Dict, List, Optional
class AIDataConfidentialityManager:
"""Manage confidentiality of AI training data and models."""
def __init__(self, master_key: bytes):
self.master_key = master_key
self.data_classifications = {}
def classify_data(self, data_id: str, classification: str) -> Dict:
"""Classify data sensitivity level."""
valid_classifications = [
"public",
"internal",
"confidential",
"restricted"
]
if classification not in valid_classifications:
raise ValueError(f"Invalid classification: {classification}")
self.data_classifications[data_id] = {
"classification": classification,
"encryption_required": classification in ["confidential", "restricted"],
"access_logging_required": classification != "public",
"retention_policy": self._get_retention_policy(classification)
}
return self.data_classifications[data_id]
def _get_retention_policy(self, classification: str) -> Dict:
"""Get retention policy based on classification."""
policies = {
"public": {"retention_days": 365, "deletion_method": "standard"},
"internal": {"retention_days": 180, "deletion_method": "secure"},
"confidential": {"retention_days": 90, "deletion_method": "secure_wipe"},
"restricted": {"retention_days": 30, "deletion_method": "crypto_shred"}
}
return policies.get(classification, policies["internal"])
def encrypt_training_data(
self,
data: bytes,
data_id: str
) -> Dict[str, bytes]:
"""Encrypt training data with key derivation."""
# Generate unique salt for this data
salt = os.urandom(16)
# Derive key from master key and salt
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=100000,
)
key = base64.urlsafe_b64encode(kdf.derive(self.master_key))
# Encrypt data
fernet = Fernet(key)
encrypted_data = fernet.encrypt(data)
return {
"encrypted_data": encrypted_data,
"salt": salt,
"data_id": data_id.encode(),
"algorithm": b"PBKDF2-SHA256-AES256"
}
def encrypt_model_weights(
self,
weights: bytes,
model_id: str
) -> Dict[str, bytes]:
"""Encrypt model weights for secure storage."""
return self.encrypt_training_data(weights, f"model_{model_id}")
def generate_access_policy(
self,
resource_type: str,
classification: str
) -> Dict:
"""Generate access control policy for AI resources."""
base_policy = {
"resource_type": resource_type,
"classification": classification,
"allowed_roles": [],
"required_approvals": 0,
"audit_all_access": True
}
if classification == "public":
base_policy["allowed_roles"] = ["*"]
base_policy["audit_all_access"] = False
elif classification == "internal":
base_policy["allowed_roles"] = ["employee", "contractor"]
elif classification == "confidential":
base_policy["allowed_roles"] = ["ml_engineer", "data_scientist"]
base_policy["required_approvals"] = 1
elif classification == "restricted":
base_policy["allowed_roles"] = ["ml_lead", "security_admin"]
base_policy["required_approvals"] = 2
return base_policy
class ModelConfidentialityControls:
"""Specific controls for ML model confidentiality."""
def __init__(self):
self.model_access_log = []
def restrict_model_extraction(self, model_id: str) -> Dict:
"""Implement controls to prevent model extraction."""
controls = {
"model_id": model_id,
"rate_limiting": {
"enabled": True,
"max_requests_per_minute": 60,
"max_requests_per_day": 10000
},
"output_perturbation": {
"enabled": True,
"noise_level": 0.001
},
"query_monitoring": {
"enabled": True,
"anomaly_detection": True,
"alert_threshold": 0.95
},
"watermarking": {
"enabled": True,
"method": "output_watermark"
}
}
return controls
def log_model_access(
self,
model_id: str,
user_id: str,
access_type: str,
metadata: Optional[Dict] = None
):
"""Log all model access for audit purposes."""
log_entry = {
"model_id": model_id,
"user_id": user_id,
"access_type": access_type,
"timestamp": datetime.utcnow().isoformat(),
"metadata": metadata or {},
"ip_address": self._get_client_ip(),
"session_id": self._get_session_id()
}
self.model_access_log.append(log_entry)
return log_entryPrivacy
Managing privacy in AI systems:
# privacy_controls.py
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import hashlib
class AIPrivacyManager:
"""Manage privacy controls for AI systems."""
def __init__(self):
self.consent_records = {}
self.data_processing_records = []
def record_consent(
self,
user_id: str,
consent_type: str,
granted: bool,
purposes: List[str]
) -> Dict:
"""Record user consent for data processing."""
consent_record = {
"user_id": self._pseudonymize_id(user_id),
"consent_type": consent_type,
"granted": granted,
"purposes": purposes,
"timestamp": datetime.utcnow().isoformat(),
"version": "1.0",
"expiry": (datetime.utcnow() + timedelta(days=365)).isoformat()
}
self.consent_records[user_id] = consent_record
return consent_record
def check_consent(
self,
user_id: str,
purpose: str
) -> bool:
"""Check if user has consented to specific purpose."""
record = self.consent_records.get(user_id)
if not record:
return False
if not record.get("granted"):
return False
if purpose not in record.get("purposes", []):
return False
# Check expiry
expiry = datetime.fromisoformat(record["expiry"])
if datetime.utcnow() > expiry:
return False
return True
def _pseudonymize_id(self, user_id: str) -> str:
"""Pseudonymize user ID for privacy."""
salt = "privacy_salt_change_in_production"
return hashlib.sha256(f"{user_id}{salt}".encode()).hexdigest()[:16]
def implement_data_minimization(
self,
data: Dict[str, Any],
required_fields: List[str]
) -> Dict[str, Any]:
"""Remove unnecessary data fields."""
return {k: v for k, v in data.items() if k in required_fields}
def apply_differential_privacy(
self,
query_result: float,
epsilon: float = 1.0,
sensitivity: float = 1.0
) -> float:
"""Apply differential privacy noise to query results."""
import numpy as np
# Laplace mechanism
scale = sensitivity / epsilon
noise = np.random.laplace(0, scale)
return query_result + noise
def generate_privacy_report(self, user_id: str) -> Dict:
"""Generate privacy report for data subject request."""
return {
"user_id": self._pseudonymize_id(user_id),
"report_generated": datetime.utcnow().isoformat(),
"data_collected": self._get_collected_data(user_id),
"processing_purposes": self._get_processing_purposes(user_id),
"third_party_sharing": self._get_sharing_records(user_id),
"retention_period": "As per privacy policy",
"rights": [
"Access your data",
"Rectify inaccurate data",
"Request deletion",
"Data portability",
"Withdraw consent"
]
}
def _get_collected_data(self, user_id: str) -> List[Dict]:
"""Get list of data collected about user."""
# Implementation specific to your system
return []
def _get_processing_purposes(self, user_id: str) -> List[str]:
"""Get purposes for which user data is processed."""
return []
def _get_sharing_records(self, user_id: str) -> List[Dict]:
"""Get records of data sharing with third parties."""
return []AI-Specific SOC 2 Controls
Model Governance Controls
# model_governance.py
from dataclasses import dataclass
from typing import Dict, List, Optional
from datetime import datetime
from enum import Enum
class ModelStatus(Enum):
DEVELOPMENT = "development"
TESTING = "testing"
STAGING = "staging"
PRODUCTION = "production"
DEPRECATED = "deprecated"
RETIRED = "retired"
@dataclass
class ModelMetadata:
model_id: str
name: str
version: str
status: ModelStatus
owner: str
created_at: datetime
last_updated: datetime
training_data_hash: str
performance_metrics: Dict[str, float]
approved_by: Optional[str] = None
approval_date: Optional[datetime] = None
class ModelGovernanceFramework:
"""SOC 2 compliant model governance."""
def __init__(self):
self.model_registry = {}
self.approval_workflows = {}
self.change_log = []
def register_model(
self,
model_id: str,
name: str,
version: str,
owner: str,
training_data_hash: str,
performance_metrics: Dict[str, float]
) -> ModelMetadata:
"""Register a new model in the governance system."""
metadata = ModelMetadata(
model_id=model_id,
name=name,
version=version,
status=ModelStatus.DEVELOPMENT,
owner=owner,
created_at=datetime.utcnow(),
last_updated=datetime.utcnow(),
training_data_hash=training_data_hash,
performance_metrics=performance_metrics
)
self.model_registry[model_id] = metadata
self._log_change(model_id, "registered", None, metadata.__dict__)
return metadata
def request_promotion(
self,
model_id: str,
target_status: ModelStatus,
requestor: str,
justification: str
) -> Dict:
"""Request model promotion through approval workflow."""
model = self.model_registry.get(model_id)
if not model:
raise ValueError(f"Model {model_id} not found")
# Define promotion paths
valid_promotions = {
ModelStatus.DEVELOPMENT: [ModelStatus.TESTING],
ModelStatus.TESTING: [ModelStatus.STAGING],
ModelStatus.STAGING: [ModelStatus.PRODUCTION],
ModelStatus.PRODUCTION: [ModelStatus.DEPRECATED],
ModelStatus.DEPRECATED: [ModelStatus.RETIRED]
}
if target_status not in valid_promotions.get(model.status, []):
raise ValueError(
f"Invalid promotion: {model.status} -> {target_status}"
)
# Create approval request
request = {
"request_id": f"PR-{model_id}-{datetime.utcnow().timestamp()}",
"model_id": model_id,
"current_status": model.status.value,
"target_status": target_status.value,
"requestor": requestor,
"justification": justification,
"created_at": datetime.utcnow().isoformat(),
"required_approvers": self._get_required_approvers(target_status),
"approvals": [],
"status": "pending"
}
self.approval_workflows[request["request_id"]] = request
return request
def approve_promotion(
self,
request_id: str,
approver: str,
approved: bool,
comments: Optional[str] = None
) -> Dict:
"""Approve or reject promotion request."""
request = self.approval_workflows.get(request_id)
if not request:
raise ValueError(f"Request {request_id} not found")
if request["status"] != "pending":
raise ValueError(f"Request already {request['status']}")
if approver not in request["required_approvers"]:
raise ValueError(f"{approver} not authorized to approve")
# Record approval
request["approvals"].append({
"approver": approver,
"approved": approved,
"comments": comments,
"timestamp": datetime.utcnow().isoformat()
})
# Check if all approvals received
if len(request["approvals"]) >= len(request["required_approvers"]):
all_approved = all(a["approved"] for a in request["approvals"])
if all_approved:
self._execute_promotion(request)
request["status"] = "approved"
else:
request["status"] = "rejected"
return request
def _get_required_approvers(self, target_status: ModelStatus) -> List[str]:
"""Get required approvers based on target environment."""
approver_matrix = {
ModelStatus.TESTING: ["ml_engineer"],
ModelStatus.STAGING: ["ml_lead", "qa_lead"],
ModelStatus.PRODUCTION: ["ml_lead", "security_lead", "product_owner"],
ModelStatus.DEPRECATED: ["ml_lead"],
ModelStatus.RETIRED: ["ml_lead", "compliance_officer"]
}
return approver_matrix.get(target_status, [])
def _execute_promotion(self, request: Dict):
"""Execute the model promotion."""
model = self.model_registry[request["model_id"]]
old_status = model.status
new_status = ModelStatus(request["target_status"])
model.status = new_status
model.last_updated = datetime.utcnow()
model.approved_by = request["approvals"][-1]["approver"]
model.approval_date = datetime.utcnow()
self._log_change(
request["model_id"],
"promoted",
{"status": old_status.value},
{"status": new_status.value}
)
def _log_change(
self,
model_id: str,
change_type: str,
old_value: Optional[Dict],
new_value: Dict
):
"""Log change for audit trail."""
self.change_log.append({
"model_id": model_id,
"change_type": change_type,
"old_value": old_value,
"new_value": new_value,
"timestamp": datetime.utcnow().isoformat()
})Audit Logging System
# audit_logging.py
import json
from datetime import datetime
from typing import Any, Dict, Optional
from enum import Enum
import hashlib
class AuditEventType(Enum):
# Access events
LOGIN = "login"
LOGOUT = "logout"
ACCESS_DENIED = "access_denied"
# Data events
DATA_ACCESS = "data_access"
DATA_MODIFICATION = "data_modification"
DATA_DELETION = "data_deletion"
DATA_EXPORT = "data_export"
# Model events
MODEL_TRAINING = "model_training"
MODEL_INFERENCE = "model_inference"
MODEL_DEPLOYMENT = "model_deployment"
MODEL_UPDATE = "model_update"
# Configuration events
CONFIG_CHANGE = "config_change"
PERMISSION_CHANGE = "permission_change"
# Security events
SECURITY_ALERT = "security_alert"
VULNERABILITY_DETECTED = "vulnerability_detected"
class SOC2AuditLogger:
"""Comprehensive audit logging for SOC 2 compliance."""
def __init__(self, storage_backend):
self.storage = storage_backend
self.log_chain = [] # For integrity verification
def log_event(
self,
event_type: AuditEventType,
actor: str,
resource: str,
action: str,
outcome: str,
metadata: Optional[Dict] = None
) -> Dict:
"""Log an audit event with integrity protection."""
# Get previous hash for chain integrity
previous_hash = self.log_chain[-1] if self.log_chain else "genesis"
event = {
"event_id": self._generate_event_id(),
"timestamp": datetime.utcnow().isoformat(),
"event_type": event_type.value,
"actor": {
"user_id": actor,
"ip_address": self._get_client_ip(),
"user_agent": self._get_user_agent(),
"session_id": self._get_session_id()
},
"resource": {
"type": self._extract_resource_type(resource),
"id": resource,
"location": self._get_resource_location(resource)
},
"action": action,
"outcome": outcome,
"metadata": metadata or {},
"integrity": {
"previous_hash": previous_hash,
"event_hash": None # Will be computed
}
}
# Compute event hash
event["integrity"]["event_hash"] = self._compute_hash(event)
self.log_chain.append(event["integrity"]["event_hash"])
# Store event
self.storage.store(event)
return event
def log_model_inference(
self,
model_id: str,
user_id: str,
input_hash: str,
output_hash: str,
latency_ms: float
) -> Dict:
"""Log model inference for audit trail."""
return self.log_event(
event_type=AuditEventType.MODEL_INFERENCE,
actor=user_id,
resource=model_id,
action="inference",
outcome="success",
metadata={
"input_hash": input_hash,
"output_hash": output_hash,
"latency_ms": latency_ms
}
)
def log_data_access(
self,
dataset_id: str,
user_id: str,
access_type: str,
records_accessed: int
) -> Dict:
"""Log data access for audit trail."""
return self.log_event(
event_type=AuditEventType.DATA_ACCESS,
actor=user_id,
resource=dataset_id,
action=access_type,
outcome="success",
metadata={
"records_accessed": records_accessed
}
)
def log_security_alert(
self,
alert_type: str,
severity: str,
description: str,
affected_resources: list
) -> Dict:
"""Log security alert."""
return self.log_event(
event_type=AuditEventType.SECURITY_ALERT,
actor="system",
resource=",".join(affected_resources),
action="alert",
outcome=severity,
metadata={
"alert_type": alert_type,
"description": description
}
)
def _generate_event_id(self) -> str:
"""Generate unique event ID."""
import uuid
return str(uuid.uuid4())
def _compute_hash(self, event: Dict) -> str:
"""Compute hash for integrity verification."""
# Remove the hash field before computing
event_copy = event.copy()
event_copy["integrity"]["event_hash"] = ""
serialized = json.dumps(event_copy, sort_keys=True)
return hashlib.sha256(serialized.encode()).hexdigest()
def _get_client_ip(self) -> str:
"""Get client IP address."""
return "0.0.0.0" # Implement based on your framework
def _get_user_agent(self) -> str:
"""Get user agent string."""
return "" # Implement based on your framework
def _get_session_id(self) -> str:
"""Get current session ID."""
return "" # Implement based on your framework
def _extract_resource_type(self, resource: str) -> str:
"""Extract resource type from resource identifier."""
if resource.startswith("model_"):
return "model"
elif resource.startswith("dataset_"):
return "dataset"
elif resource.startswith("user_"):
return "user"
return "unknown"
def _get_resource_location(self, resource: str) -> str:
"""Get resource storage location."""
return "primary_region" # Implement based on your infrastructure
def verify_log_integrity(self) -> bool:
"""Verify integrity of audit log chain."""
events = self.storage.retrieve_all()
for i, event in enumerate(events):
# Verify hash chain
expected_previous = events[i-1]["integrity"]["event_hash"] if i > 0 else "genesis"
if event["integrity"]["previous_hash"] != expected_previous:
return False
# Verify event hash
computed_hash = self._compute_hash(event)
if computed_hash != event["integrity"]["event_hash"]:
return False
return TrueAudit Preparation Checklist
Pre-Audit Documentation
# soc2_audit_preparation.yaml
audit_preparation:
documentation:
policies:
- information_security_policy
- access_control_policy
- data_classification_policy
- incident_response_policy
- change_management_policy
- vendor_management_policy
- ai_ethics_policy
- model_governance_policy
procedures:
- user_provisioning_procedure
- backup_and_recovery_procedure
- vulnerability_management_procedure
- security_awareness_training
- model_deployment_procedure
- data_retention_procedure
evidence:
- access_review_records
- penetration_test_results
- vulnerability_scan_reports
- incident_reports
- change_tickets
- training_completion_records
- model_approval_records
- audit_logs
ai_specific_evidence:
model_governance:
- model_registry_export
- promotion_approval_records
- model_performance_reports
- bias_testing_results
data_management:
- training_data_lineage
- data_quality_reports
- consent_records
- privacy_impact_assessments
security:
- model_access_logs
- inference_audit_trails
- security_testing_results
- vulnerability_assessmentsControl Testing Schedule
# control_testing.py
from datetime import datetime, timedelta
from typing import Dict, List
class SOC2ControlTestingSchedule:
"""Manage SOC 2 control testing schedule."""
def __init__(self):
self.controls = self._define_controls()
self.test_results = []
def _define_controls(self) -> List[Dict]:
"""Define SOC 2 controls with testing frequency."""
return [
# Access Controls
{
"control_id": "CC6.1",
"name": "User Access Provisioning",
"category": "Logical Access",
"testing_frequency": "quarterly",
"ai_relevance": "high",
"test_procedure": "Review user access provisioning process and sample new user setups"
},
{
"control_id": "CC6.2",
"name": "Access Review",
"category": "Logical Access",
"testing_frequency": "quarterly",
"ai_relevance": "high",
"test_procedure": "Review access review process and evidence of quarterly reviews"
},
{
"control_id": "CC6.3",
"name": "Privileged Access",
"category": "Logical Access",
"testing_frequency": "monthly",
"ai_relevance": "critical",
"test_procedure": "Review privileged access to ML systems and models"
},
# Change Management
{
"control_id": "CC8.1",
"name": "Change Management Process",
"category": "Change Management",
"testing_frequency": "quarterly",
"ai_relevance": "critical",
"test_procedure": "Review model deployment change tickets and approvals"
},
# Monitoring
{
"control_id": "CC7.1",
"name": "Security Monitoring",
"category": "Monitoring",
"testing_frequency": "monthly",
"ai_relevance": "high",
"test_procedure": "Review security monitoring alerts and incident response"
},
{
"control_id": "CC7.2",
"name": "Model Performance Monitoring",
"category": "Monitoring",
"testing_frequency": "weekly",
"ai_relevance": "critical",
"test_procedure": "Review model drift detection and performance alerts"
},
# AI-Specific Controls
{
"control_id": "AI.1",
"name": "Model Governance",
"category": "AI Controls",
"testing_frequency": "monthly",
"ai_relevance": "critical",
"test_procedure": "Review model registry and governance process"
},
{
"control_id": "AI.2",
"name": "Training Data Security",
"category": "AI Controls",
"testing_frequency": "quarterly",
"ai_relevance": "critical",
"test_procedure": "Review training data access controls and lineage"
},
{
"control_id": "AI.3",
"name": "Model Bias Testing",
"category": "AI Controls",
"testing_frequency": "monthly",
"ai_relevance": "critical",
"test_procedure": "Review bias testing results and remediation"
}
]
def generate_testing_schedule(
self,
start_date: datetime,
end_date: datetime
) -> List[Dict]:
"""Generate testing schedule for audit period."""
schedule = []
for control in self.controls:
frequency = control["testing_frequency"]
if frequency == "weekly":
delta = timedelta(weeks=1)
elif frequency == "monthly":
delta = timedelta(days=30)
elif frequency == "quarterly":
delta = timedelta(days=90)
else:
delta = timedelta(days=365)
current_date = start_date
while current_date <= end_date:
schedule.append({
"control_id": control["control_id"],
"control_name": control["name"],
"scheduled_date": current_date.isoformat(),
"test_procedure": control["test_procedure"],
"status": "scheduled"
})
current_date += delta
return sorted(schedule, key=lambda x: x["scheduled_date"])
def record_test_result(
self,
control_id: str,
test_date: datetime,
result: str,
evidence: List[str],
findings: str,
tester: str
) -> Dict:
"""Record control test result."""
result_record = {
"control_id": control_id,
"test_date": test_date.isoformat(),
"result": result, # pass, fail, partial
"evidence": evidence,
"findings": findings,
"tester": tester,
"remediation_required": result != "pass"
}
self.test_results.append(result_record)
return result_recordConclusion
Achieving SOC 2 compliance for AI startups requires extending traditional controls to address AI-specific risks around model governance, data handling, and algorithmic accountability. Key success factors include:
- Implement robust model governance with approval workflows
- Maintain comprehensive audit trails for all AI operations
- Apply data classification to training data and model weights
- Test controls regularly with AI-specific focus
- Document AI-specific policies for ethics and governance
By building these controls into your AI systems from the start, you create a foundation for trust that enables enterprise sales and regulatory compliance.