AI Security Monitoring and Observability: Real-Time Threat Detection for ML Systems
AI systems require specialized monitoring beyond traditional application observability. This guide covers security monitoring patterns for detecting attacks, drift, and anomalies in ML deployments.
AI-Specific Monitoring Architecture
Core Monitoring Framework
from dataclasses import dataclass, field
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Callable, Any
from enum import Enum
import numpy as np
from collections import deque
import threading
import logging
logger = logging.getLogger(__name__)
class AlertSeverity(Enum):
INFO = "info"
WARNING = "warning"
CRITICAL = "critical"
class ThreatCategory(Enum):
INPUT_MANIPULATION = "input_manipulation"
MODEL_EXTRACTION = "model_extraction"
DATA_POISONING = "data_poisoning"
ADVERSARIAL_ATTACK = "adversarial_attack"
PROMPT_INJECTION = "prompt_injection"
UNUSUAL_BEHAVIOR = "unusual_behavior"
@dataclass
class SecurityAlert:
id: str
timestamp: datetime
category: ThreatCategory
severity: AlertSeverity
description: str
details: Dict[str, Any]
source_ip: Optional[str] = None
user_id: Optional[str] = None
model_id: Optional[str] = None
request_id: Optional[str] = None
mitigated: bool = False
@dataclass
class ModelMetrics:
model_id: str
timestamp: datetime
latency_ms: float
input_size: int
output_confidence: float
prediction_class: Optional[str] = None
input_hash: Optional[str] = None
anomaly_score: float = 0.0
class AISecurityMonitor:
def __init__(self, config: Dict[str, Any]):
self.config = config
self.alerts: deque = deque(maxlen=10000)
self.metrics_buffer: deque = deque(maxlen=50000)
self.alert_handlers: List[Callable[[SecurityAlert], None]] = []
self.detection_rules: Dict[str, Callable] = {}
self.baseline_stats: Dict[str, Dict] = {}
self._lock = threading.Lock()
# Initialize detection rules
self._register_default_rules()
def _register_default_rules(self):
"""Register default security detection rules."""
self.detection_rules = {
"high_frequency_requests": self._detect_high_frequency,
"anomalous_input": self._detect_anomalous_input,
"confidence_drift": self._detect_confidence_drift,
"latency_anomaly": self._detect_latency_anomaly,
"repeated_queries": self._detect_repeated_queries,
"input_perturbation": self._detect_input_perturbation
}
def record_inference(self, metrics: ModelMetrics) -> List[SecurityAlert]:
"""Record model inference and check for security issues."""
with self._lock:
self.metrics_buffer.append(metrics)
alerts = []
for rule_name, rule_func in self.detection_rules.items():
try:
alert = rule_func(metrics)
if alert:
alerts.append(alert)
self._handle_alert(alert)
except Exception as e:
logger.error(f"Detection rule {rule_name} failed: {e}")
return alerts
def _detect_high_frequency(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect unusually high request frequency (potential extraction attack)."""
window_seconds = self.config.get("frequency_window", 60)
threshold = self.config.get("frequency_threshold", 100)
cutoff = datetime.utcnow() - timedelta(seconds=window_seconds)
recent = [m for m in self.metrics_buffer if m.timestamp > cutoff]
# Group by source (could be IP or user)
source_counts: Dict[str, int] = {}
for m in recent:
# Use model_id as grouping key for this example
source_counts[m.model_id] = source_counts.get(m.model_id, 0) + 1
for source, count in source_counts.items():
if count > threshold:
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.MODEL_EXTRACTION,
severity=AlertSeverity.WARNING,
description=f"High frequency requests detected: {count} in {window_seconds}s",
details={
"request_count": count,
"window_seconds": window_seconds,
"threshold": threshold,
"source": source
},
model_id=metrics.model_id
)
return None
def _detect_anomalous_input(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect statistically anomalous inputs."""
model_stats = self.baseline_stats.get(metrics.model_id, {})
if not model_stats:
return None
# Check input size anomaly
mean_size = model_stats.get("mean_input_size", 0)
std_size = model_stats.get("std_input_size", 1)
if std_size > 0:
z_score = abs(metrics.input_size - mean_size) / std_size
if z_score > self.config.get("input_anomaly_threshold", 3):
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.INPUT_MANIPULATION,
severity=AlertSeverity.WARNING,
description=f"Anomalous input size detected (z-score: {z_score:.2f})",
details={
"input_size": metrics.input_size,
"mean_size": mean_size,
"std_size": std_size,
"z_score": z_score
},
model_id=metrics.model_id,
request_id=metrics.input_hash
)
return None
def _detect_confidence_drift(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect unusual confidence score patterns."""
model_stats = self.baseline_stats.get(metrics.model_id, {})
if not model_stats:
return None
# Check for adversarial-like confidence (very high or clustered at boundaries)
if metrics.output_confidence > 0.99 or metrics.output_confidence < 0.01:
# Get recent confidence scores
recent = [m for m in self.metrics_buffer
if m.model_id == metrics.model_id][-100:]
extreme_count = sum(1 for m in recent
if m.output_confidence > 0.99 or m.output_confidence < 0.01)
if extreme_count > len(recent) * 0.3: # 30% threshold
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.ADVERSARIAL_ATTACK,
severity=AlertSeverity.WARNING,
description="Unusual confidence distribution detected",
details={
"extreme_confidence_ratio": extreme_count / len(recent),
"current_confidence": metrics.output_confidence,
"sample_size": len(recent)
},
model_id=metrics.model_id
)
return None
def _detect_latency_anomaly(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect latency anomalies that might indicate attacks."""
model_stats = self.baseline_stats.get(metrics.model_id, {})
if not model_stats:
return None
mean_latency = model_stats.get("mean_latency", 0)
std_latency = model_stats.get("std_latency", 1)
if std_latency > 0:
z_score = (metrics.latency_ms - mean_latency) / std_latency
# Unusually slow could indicate complex adversarial input
if z_score > self.config.get("latency_anomaly_threshold", 4):
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.ADVERSARIAL_ATTACK,
severity=AlertSeverity.INFO,
description=f"Latency anomaly detected (z-score: {z_score:.2f})",
details={
"latency_ms": metrics.latency_ms,
"mean_latency": mean_latency,
"z_score": z_score
},
model_id=metrics.model_id
)
return None
def _detect_repeated_queries(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect repeated or near-identical queries (probing behavior)."""
if not metrics.input_hash:
return None
window_minutes = self.config.get("repeat_window_minutes", 5)
threshold = self.config.get("repeat_threshold", 10)
cutoff = datetime.utcnow() - timedelta(minutes=window_minutes)
recent = [m for m in self.metrics_buffer
if m.timestamp > cutoff and m.input_hash]
hash_counts: Dict[str, int] = {}
for m in recent:
hash_counts[m.input_hash] = hash_counts.get(m.input_hash, 0) + 1
if hash_counts.get(metrics.input_hash, 0) > threshold:
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.MODEL_EXTRACTION,
severity=AlertSeverity.WARNING,
description="Repeated identical queries detected",
details={
"input_hash": metrics.input_hash,
"repeat_count": hash_counts[metrics.input_hash],
"window_minutes": window_minutes
},
model_id=metrics.model_id
)
return None
def _detect_input_perturbation(self, metrics: ModelMetrics) -> Optional[SecurityAlert]:
"""Detect systematic input perturbation patterns."""
# Get recent inputs for the same model
recent = [m for m in self.metrics_buffer
if m.model_id == metrics.model_id][-50:]
if len(recent) < 10:
return None
# Analyze input size patterns for systematic perturbation
sizes = [m.input_size for m in recent]
size_diffs = [abs(sizes[i] - sizes[i-1]) for i in range(1, len(sizes))]
# Check for suspiciously uniform small differences
if size_diffs:
avg_diff = np.mean(size_diffs)
std_diff = np.std(size_diffs)
# Very consistent small changes suggest adversarial probing
if avg_diff < 10 and std_diff < 2:
return SecurityAlert(
id=f"alert_{datetime.utcnow().timestamp()}",
timestamp=datetime.utcnow(),
category=ThreatCategory.ADVERSARIAL_ATTACK,
severity=AlertSeverity.WARNING,
description="Systematic input perturbation pattern detected",
details={
"avg_size_diff": avg_diff,
"std_size_diff": std_diff,
"sample_count": len(recent)
},
model_id=metrics.model_id
)
return None
def update_baseline(self, model_id: str, metrics_window: List[ModelMetrics]):
"""Update baseline statistics for a model."""
if not metrics_window:
return
input_sizes = [m.input_size for m in metrics_window]
latencies = [m.latency_ms for m in metrics_window]
confidences = [m.output_confidence for m in metrics_window]
self.baseline_stats[model_id] = {
"mean_input_size": np.mean(input_sizes),
"std_input_size": np.std(input_sizes),
"mean_latency": np.mean(latencies),
"std_latency": np.std(latencies),
"mean_confidence": np.mean(confidences),
"std_confidence": np.std(confidences),
"updated_at": datetime.utcnow().isoformat()
}
def register_alert_handler(self, handler: Callable[[SecurityAlert], None]):
"""Register a handler for security alerts."""
self.alert_handlers.append(handler)
def _handle_alert(self, alert: SecurityAlert):
"""Process and distribute alert to handlers."""
with self._lock:
self.alerts.append(alert)
for handler in self.alert_handlers:
try:
handler(alert)
except Exception as e:
logger.error(f"Alert handler failed: {e}")
def get_alerts(self,
severity: Optional[AlertSeverity] = None,
category: Optional[ThreatCategory] = None,
since: Optional[datetime] = None) -> List[SecurityAlert]:
"""Query alerts with optional filters."""
alerts = list(self.alerts)
if severity:
alerts = [a for a in alerts if a.severity == severity]
if category:
alerts = [a for a in alerts if a.category == category]
if since:
alerts = [a for a in alerts if a.timestamp > since]
return alertsLLM-Specific Monitoring
Prompt Injection Detection
import re
from typing import List, Tuple
import hashlib
class LLMSecurityMonitor:
def __init__(self):
self.prompt_patterns = self._load_injection_patterns()
self.seen_prompts: dict = {} # For deduplication
self.jailbreak_signatures = self._load_jailbreak_signatures()
def _load_injection_patterns(self) -> List[Tuple[str, str, float]]:
"""Load patterns for prompt injection detection."""
return [
# (pattern, description, severity_score)
(r"ignore\s+(previous|all|above)\s+instructions?",
"Instruction override attempt", 0.9),
(r"disregard\s+(the\s+)?(system|previous)\s+(prompt|instructions?)",
"System prompt override", 0.95),
(r"you\s+are\s+now\s+(a|an|in)\s+",
"Role reassignment attempt", 0.7),
(r"pretend\s+(you('re|are)|to\s+be)",
"Role pretending attempt", 0.6),
(r"act\s+as\s+(if|though|a|an)",
"Role acting attempt", 0.5),
(r"(new|different|alternate)\s+persona",
"Persona switch attempt", 0.7),
(r"output\s+(the\s+)?(system|initial|original)\s+prompt",
"Prompt extraction attempt", 0.85),
(r"reveal\s+(your|the)\s+(instructions?|prompt|programming)",
"Instruction reveal attempt", 0.85),
(r"what\s+(are|were)\s+your\s+(initial|system|original)\s+instructions?",
"System prompt query", 0.8),
(r"developer\s+mode|sudo\s+mode|admin\s+mode",
"Privilege escalation attempt", 0.9),
(r"<\|?(system|end|im_start|im_end)\|?>",
"Token injection attempt", 0.95),
(r"\\n\\n.*human:|\\n\\nassistant:",
"Conversation injection", 0.9),
]
def _load_jailbreak_signatures(self) -> List[dict]:
"""Load known jailbreak attempt signatures."""
return [
{
"name": "DAN",
"patterns": [r"DAN\s*(\d+)?", r"do\s+anything\s+now"],
"severity": 0.95
},
{
"name": "Developer Mode",
"patterns": [r"developer\s+mode\s+(enabled|on|active)"],
"severity": 0.9
},
{
"name": "Evil Twin",
"patterns": [r"evil\s+(twin|version|mode)", r"opposite\s+day"],
"severity": 0.85
},
{
"name": "Token Smuggling",
"patterns": [r"<\|.*?\|>", r"\[INST\]", r"\[/INST\]"],
"severity": 0.95
}
]
def analyze_prompt(self, prompt: str, context: dict = None) -> dict:
"""Analyze prompt for security issues."""
results = {
"is_safe": True,
"risk_score": 0.0,
"detections": [],
"recommendations": []
}
# Normalize prompt for analysis
normalized = prompt.lower().strip()
# Check injection patterns
for pattern, description, severity in self.prompt_patterns:
if re.search(pattern, normalized, re.IGNORECASE):
results["detections"].append({
"type": "prompt_injection",
"pattern": pattern,
"description": description,
"severity": severity
})
results["risk_score"] = max(results["risk_score"], severity)
# Check jailbreak signatures
for signature in self.jailbreak_signatures:
for pattern in signature["patterns"]:
if re.search(pattern, normalized, re.IGNORECASE):
results["detections"].append({
"type": "jailbreak_attempt",
"name": signature["name"],
"severity": signature["severity"]
})
results["risk_score"] = max(
results["risk_score"],
signature["severity"]
)
break
# Check for suspicious encoding
encoding_issues = self._check_encoding_attacks(prompt)
if encoding_issues:
results["detections"].extend(encoding_issues)
results["risk_score"] = max(
results["risk_score"],
max(i["severity"] for i in encoding_issues)
)
# Check for repeated prompt patterns (probing)
prompt_hash = hashlib.md5(normalized.encode()).hexdigest()
if prompt_hash in self.seen_prompts:
self.seen_prompts[prompt_hash] += 1
if self.seen_prompts[prompt_hash] > 5:
results["detections"].append({
"type": "repeated_prompt",
"count": self.seen_prompts[prompt_hash],
"severity": 0.6
})
else:
self.seen_prompts[prompt_hash] = 1
# Determine safety
results["is_safe"] = results["risk_score"] < 0.7
# Generate recommendations
if results["detections"]:
results["recommendations"] = self._generate_recommendations(
results["detections"]
)
return results
def _check_encoding_attacks(self, prompt: str) -> List[dict]:
"""Check for encoding-based attacks."""
issues = []
# Check for Unicode tricks
if any(ord(c) > 127 for c in prompt):
# Look for confusable characters
confusables = self._find_confusable_chars(prompt)
if confusables:
issues.append({
"type": "unicode_confusion",
"description": "Potentially confusable Unicode characters",
"characters": confusables,
"severity": 0.6
})
# Check for invisible characters
invisible_chars = [c for c in prompt if ord(c) in
[0x200B, 0x200C, 0x200D, 0xFEFF, 0x2060]]
if invisible_chars:
issues.append({
"type": "invisible_characters",
"description": "Invisible Unicode characters detected",
"count": len(invisible_chars),
"severity": 0.8
})
# Check for base64 encoded payloads
base64_pattern = r"[A-Za-z0-9+/]{40,}={0,2}"
if re.search(base64_pattern, prompt):
issues.append({
"type": "encoded_payload",
"description": "Potential base64 encoded content",
"severity": 0.5
})
return issues
def _find_confusable_chars(self, text: str) -> List[dict]:
"""Find visually confusable characters."""
confusables = []
# Common confusable mappings
confusable_map = {
'\u0430': 'a', # Cyrillic а
'\u0435': 'e', # Cyrillic е
'\u043e': 'o', # Cyrillic о
'\u0440': 'p', # Cyrillic р
'\u0441': 'c', # Cyrillic с
'\u0443': 'y', # Cyrillic у
'\u0445': 'x', # Cyrillic х
}
for i, char in enumerate(text):
if char in confusable_map:
confusables.append({
"position": i,
"char": char,
"looks_like": confusable_map[char]
})
return confusables
def _generate_recommendations(self, detections: List[dict]) -> List[str]:
"""Generate security recommendations based on detections."""
recommendations = []
detection_types = set(d["type"] for d in detections)
if "prompt_injection" in detection_types:
recommendations.append(
"Implement input sanitization to remove injection attempts"
)
recommendations.append(
"Use prompt templates with clear boundaries"
)
if "jailbreak_attempt" in detection_types:
recommendations.append(
"Block requests matching known jailbreak patterns"
)
recommendations.append(
"Implement output filtering for harmful content"
)
if "unicode_confusion" in detection_types:
recommendations.append(
"Normalize Unicode input to ASCII equivalents"
)
if "invisible_characters" in detection_types:
recommendations.append(
"Strip invisible Unicode characters from input"
)
if "repeated_prompt" in detection_types:
recommendations.append(
"Implement rate limiting for similar prompts"
)
return recommendations
def analyze_response(self,
prompt: str,
response: str,
expected_behavior: dict = None) -> dict:
"""Analyze LLM response for security issues."""
results = {
"is_safe": True,
"issues": [],
"leaked_info": []
}
# Check for data leakage
leakage_patterns = [
(r"(api[_-]?key|secret|password|token)\s*[:=]\s*['\"]?[\w-]+",
"Potential credential leakage"),
(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
"Email address in response"),
(r"\b\d{3}[-.]?\d{3}[-.]?\d{4}\b",
"Phone number in response"),
(r"\b\d{3}[-]?\d{2}[-]?\d{4}\b",
"Potential SSN pattern"),
]
for pattern, description in leakage_patterns:
matches = re.findall(pattern, response, re.IGNORECASE)
if matches:
results["leaked_info"].append({
"type": description,
"matches": matches[:5] # Limit to prevent large outputs
})
results["is_safe"] = False
# Check if response indicates successful injection
injection_success_indicators = [
"I am now in",
"DAN mode",
"developer mode enabled",
"I will ignore",
"I no longer have",
"my original instructions",
]
for indicator in injection_success_indicators:
if indicator.lower() in response.lower():
results["issues"].append({
"type": "injection_success",
"indicator": indicator
})
results["is_safe"] = False
# Check response length anomaly
if expected_behavior:
expected_length = expected_behavior.get("expected_max_length", 10000)
if len(response) > expected_length * 1.5:
results["issues"].append({
"type": "response_length_anomaly",
"length": len(response),
"expected_max": expected_length
})
return resultsMetrics Dashboard Integration
from prometheus_client import Counter, Histogram, Gauge, CollectorRegistry
import time
class AIMetricsExporter:
def __init__(self, registry: CollectorRegistry = None):
self.registry = registry or CollectorRegistry()
# Inference metrics
self.inference_total = Counter(
'ai_inference_total',
'Total number of model inferences',
['model_id', 'status'],
registry=self.registry
)
self.inference_latency = Histogram(
'ai_inference_latency_seconds',
'Model inference latency',
['model_id'],
buckets=[.01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10],
registry=self.registry
)
self.confidence_score = Histogram(
'ai_confidence_score',
'Model output confidence scores',
['model_id'],
buckets=[.1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99],
registry=self.registry
)
# Security metrics
self.security_alerts = Counter(
'ai_security_alerts_total',
'Total security alerts',
['model_id', 'category', 'severity'],
registry=self.registry
)
self.blocked_requests = Counter(
'ai_blocked_requests_total',
'Requests blocked by security rules',
['model_id', 'reason'],
registry=self.registry
)
self.prompt_injection_attempts = Counter(
'ai_prompt_injection_attempts_total',
'Detected prompt injection attempts',
['model_id', 'injection_type'],
registry=self.registry
)
# Model health metrics
self.model_drift_score = Gauge(
'ai_model_drift_score',
'Current model drift score',
['model_id'],
registry=self.registry
)
self.anomaly_score = Gauge(
'ai_anomaly_score',
'Current anomaly detection score',
['model_id'],
registry=self.registry
)
def record_inference(self, model_id: str, latency: float,
confidence: float, status: str = "success"):
"""Record inference metrics."""
self.inference_total.labels(
model_id=model_id,
status=status
).inc()
self.inference_latency.labels(
model_id=model_id
).observe(latency)
self.confidence_score.labels(
model_id=model_id
).observe(confidence)
def record_security_alert(self, model_id: str,
category: str, severity: str):
"""Record security alert."""
self.security_alerts.labels(
model_id=model_id,
category=category,
severity=severity
).inc()
def record_blocked_request(self, model_id: str, reason: str):
"""Record blocked request."""
self.blocked_requests.labels(
model_id=model_id,
reason=reason
).inc()
def record_prompt_injection(self, model_id: str, injection_type: str):
"""Record prompt injection attempt."""
self.prompt_injection_attempts.labels(
model_id=model_id,
injection_type=injection_type
).inc()
def update_drift_score(self, model_id: str, score: float):
"""Update model drift score."""
self.model_drift_score.labels(model_id=model_id).set(score)
def update_anomaly_score(self, model_id: str, score: float):
"""Update anomaly score."""
self.anomaly_score.labels(model_id=model_id).set(score)
# Grafana dashboard configuration
GRAFANA_DASHBOARD = {
"title": "AI Security Monitoring",
"panels": [
{
"title": "Inference Rate",
"type": "graph",
"query": "rate(ai_inference_total[5m])"
},
{
"title": "Security Alerts by Category",
"type": "piechart",
"query": "sum by (category) (ai_security_alerts_total)"
},
{
"title": "Prompt Injection Attempts",
"type": "stat",
"query": "sum(increase(ai_prompt_injection_attempts_total[1h]))"
},
{
"title": "Model Drift Score",
"type": "gauge",
"query": "ai_model_drift_score",
"thresholds": [0.3, 0.7]
},
{
"title": "P99 Latency",
"type": "graph",
"query": "histogram_quantile(0.99, rate(ai_inference_latency_seconds_bucket[5m]))"
},
{
"title": "Blocked Requests",
"type": "table",
"query": "topk(10, sum by (reason) (ai_blocked_requests_total))"
}
]
}Alerting Configuration
# alertmanager-rules.yaml
groups:
- name: ai-security-alerts
rules:
- alert: HighPromptInjectionRate
expr: rate(ai_prompt_injection_attempts_total[5m]) > 10
for: 2m
labels:
severity: warning
annotations:
summary: "High rate of prompt injection attempts"
description: "More than 10 prompt injection attempts per second detected"
- alert: ModelDriftDetected
expr: ai_model_drift_score > 0.7
for: 10m
labels:
severity: warning
annotations:
summary: "Model drift detected"
description: "Model {{ $labels.model_id }} drift score is {{ $value }}"
- alert: AnomalousInferencePattern
expr: ai_anomaly_score > 0.8
for: 5m
labels:
severity: critical
annotations:
summary: "Anomalous inference pattern detected"
description: "Model {{ $labels.model_id }} showing anomalous behavior"
- alert: HighBlockedRequestRate
expr: rate(ai_blocked_requests_total[5m]) > 50
for: 5m
labels:
severity: critical
annotations:
summary: "High rate of blocked requests"
description: "Possible attack in progress"
- alert: InferenceLatencyHigh
expr: histogram_quantile(0.99, rate(ai_inference_latency_seconds_bucket[5m])) > 5
for: 10m
labels:
severity: warning
annotations:
summary: "High inference latency"
description: "P99 latency is {{ $value }}s for model {{ $labels.model_id }}"Best Practices
Monitoring Strategy
- Baseline establishment: Collect normal behavior metrics before enabling alerting
- Multi-layer detection: Combine statistical, rule-based, and ML-based detection
- Context preservation: Log full request context for forensic analysis
- Tunable thresholds: Allow adjustment based on model and traffic patterns
Alert Management
- Use severity levels appropriately
- Implement alert aggregation to prevent fatigue
- Create runbooks for each alert type
- Regular review and tuning of alert thresholds
Related Resources
- Model Monitoring in Production: Detecting Data Drift and Model Degradation — Production monitoring with Evidently
- MLOps Security: Securing Your ML Pipeline — End-to-end ML pipeline security
- MLOps Best Practices: Building Production-Ready ML Pipelines — Production pipeline patterns
- Common MLOps Mistakes and How to Avoid Them — Including deploying without monitoring
- What is MLOps? — Complete MLOps overview
Need help building AI monitoring infrastructure? DeviDevs implements production MLOps platforms with comprehensive security monitoring. Get a free assessment →