AI API Security: Authentication, Authorization, and Rate Limiting
AI APIs present unique security challenges due to their high computational costs, potential for abuse, and sensitivity of processed data. This guide covers comprehensive security measures for AI API deployments.
Authentication Mechanisms
API Key Authentication with Rotation
# api_key_auth.py
import secrets
import hashlib
from datetime import datetime, timedelta
from typing import Dict, Optional, List
from dataclasses import dataclass
@dataclass
class APIKey:
"""API key record."""
key_id: str
key_hash: str
name: str
organization_id: str
created_at: datetime
expires_at: Optional[datetime]
last_used: Optional[datetime]
scopes: List[str]
rate_limit_tier: str
status: str # active, revoked, expired
class APIKeyManager:
"""Manage API keys for AI API access."""
def __init__(self, key_store):
self.store = key_store
self.key_prefix = "sk-"
self.key_length = 48
def generate_key(
self,
name: str,
organization_id: str,
scopes: List[str],
rate_limit_tier: str = "standard",
expires_in_days: Optional[int] = 365
) -> Dict:
"""Generate new API key."""
# Generate random key
random_part = secrets.token_urlsafe(self.key_length)
full_key = f"{self.key_prefix}{random_part}"
# Hash key for storage
key_hash = self._hash_key(full_key)
key_id = f"key_{secrets.token_hex(8)}"
# Calculate expiry
expires_at = None
if expires_in_days:
expires_at = datetime.utcnow() + timedelta(days=expires_in_days)
# Create key record
api_key = APIKey(
key_id=key_id,
key_hash=key_hash,
name=name,
organization_id=organization_id,
created_at=datetime.utcnow(),
expires_at=expires_at,
last_used=None,
scopes=scopes,
rate_limit_tier=rate_limit_tier,
status="active"
)
# Store key (only hash is stored)
self.store.save_key(api_key)
return {
"key_id": key_id,
"api_key": full_key, # Only returned once!
"expires_at": expires_at.isoformat() if expires_at else None,
"scopes": scopes,
"warning": "Save this key securely. It cannot be retrieved again."
}
def validate_key(self, api_key: str) -> Dict:
"""Validate API key and return associated metadata."""
if not api_key.startswith(self.key_prefix):
return {"valid": False, "error": "Invalid key format"}
key_hash = self._hash_key(api_key)
# Look up key by hash
key_record = self.store.find_by_hash(key_hash)
if not key_record:
return {"valid": False, "error": "Key not found"}
if key_record.status == "revoked":
return {"valid": False, "error": "Key has been revoked"}
if key_record.expires_at and datetime.utcnow() > key_record.expires_at:
return {"valid": False, "error": "Key has expired"}
# Update last used
key_record.last_used = datetime.utcnow()
self.store.save_key(key_record)
return {
"valid": True,
"key_id": key_record.key_id,
"organization_id": key_record.organization_id,
"scopes": key_record.scopes,
"rate_limit_tier": key_record.rate_limit_tier
}
def rotate_key(self, key_id: str) -> Dict:
"""Rotate existing API key."""
old_key = self.store.find_by_id(key_id)
if not old_key:
raise ValueError("Key not found")
# Generate new key with same properties
new_key_result = self.generate_key(
name=old_key.name,
organization_id=old_key.organization_id,
scopes=old_key.scopes,
rate_limit_tier=old_key.rate_limit_tier,
expires_in_days=None # Will calculate from original
)
# Set old key to expire soon (grace period)
old_key.expires_at = datetime.utcnow() + timedelta(hours=24)
self.store.save_key(old_key)
return {
"new_key": new_key_result,
"old_key_expires": old_key.expires_at.isoformat(),
"message": "Old key will remain valid for 24 hours"
}
def revoke_key(self, key_id: str, reason: str) -> bool:
"""Revoke API key immediately."""
key_record = self.store.find_by_id(key_id)
if not key_record:
return False
key_record.status = "revoked"
self.store.save_key(key_record)
# Log revocation
self._log_revocation(key_id, reason)
return True
def _hash_key(self, key: str) -> str:
"""Hash API key for secure storage."""
return hashlib.sha256(key.encode()).hexdigest()
def _log_revocation(self, key_id: str, reason: str):
"""Log key revocation for audit."""
pass
class JWTAuthenticator:
"""JWT-based authentication for AI APIs."""
def __init__(self, secret_key: str, issuer: str):
self.secret_key = secret_key
self.issuer = issuer
self.algorithm = "RS256"
def generate_token(
self,
user_id: str,
organization_id: str,
scopes: List[str],
expires_in: int = 3600
) -> str:
"""Generate JWT access token."""
import jwt
now = datetime.utcnow()
payload = {
"sub": user_id,
"org": organization_id,
"scopes": scopes,
"iat": now,
"exp": now + timedelta(seconds=expires_in),
"iss": self.issuer,
"jti": secrets.token_hex(16)
}
return jwt.encode(payload, self.secret_key, algorithm=self.algorithm)
def validate_token(self, token: str) -> Dict:
"""Validate JWT token."""
import jwt
try:
payload = jwt.decode(
token,
self.secret_key,
algorithms=[self.algorithm],
issuer=self.issuer
)
return {
"valid": True,
"user_id": payload["sub"],
"organization_id": payload["org"],
"scopes": payload["scopes"],
"expires_at": datetime.fromtimestamp(payload["exp"])
}
except jwt.ExpiredSignatureError:
return {"valid": False, "error": "Token expired"}
except jwt.InvalidTokenError as e:
return {"valid": False, "error": str(e)}Authorization Framework
Scope-Based Authorization
# authorization.py
from dataclasses import dataclass
from typing import List, Dict, Set
from enum import Enum
from functools import wraps
class AIScope(Enum):
"""AI API scopes."""
# Model access
INFERENCE_READ = "inference:read"
INFERENCE_WRITE = "inference:write"
MODELS_LIST = "models:list"
MODELS_DEPLOY = "models:deploy"
# Data access
EMBEDDINGS_CREATE = "embeddings:create"
COMPLETIONS_CREATE = "completions:create"
IMAGES_CREATE = "images:create"
AUDIO_TRANSCRIBE = "audio:transcribe"
# Fine-tuning
FINETUNE_CREATE = "finetune:create"
FINETUNE_READ = "finetune:read"
FINETUNE_DELETE = "finetune:delete"
# Admin
ORGANIZATION_READ = "organization:read"
ORGANIZATION_WRITE = "organization:write"
USAGE_READ = "usage:read"
KEYS_MANAGE = "keys:manage"
@dataclass
class Permission:
"""Permission definition."""
scope: AIScope
resource_type: str
actions: List[str]
conditions: Dict
class AuthorizationManager:
"""Manage authorization for AI API requests."""
def __init__(self):
self.scope_hierarchy = self._build_scope_hierarchy()
self.resource_policies = {}
def _build_scope_hierarchy(self) -> Dict[str, Set[str]]:
"""Build scope hierarchy for inheritance."""
return {
"admin": {
AIScope.ORGANIZATION_WRITE.value,
AIScope.ORGANIZATION_READ.value,
AIScope.USAGE_READ.value,
AIScope.KEYS_MANAGE.value,
AIScope.MODELS_DEPLOY.value
},
"developer": {
AIScope.INFERENCE_WRITE.value,
AIScope.INFERENCE_READ.value,
AIScope.MODELS_LIST.value,
AIScope.COMPLETIONS_CREATE.value,
AIScope.EMBEDDINGS_CREATE.value,
AIScope.IMAGES_CREATE.value,
AIScope.AUDIO_TRANSCRIBE.value,
AIScope.FINETUNE_CREATE.value,
AIScope.FINETUNE_READ.value
},
"viewer": {
AIScope.INFERENCE_READ.value,
AIScope.MODELS_LIST.value,
AIScope.USAGE_READ.value,
AIScope.FINETUNE_READ.value
}
}
def check_permission(
self,
user_scopes: List[str],
required_scope: AIScope,
resource: Optional[str] = None,
context: Optional[Dict] = None
) -> Dict:
"""Check if user has required permission."""
# Expand user scopes
expanded_scopes = set()
for scope in user_scopes:
expanded_scopes.add(scope)
if scope in self.scope_hierarchy:
expanded_scopes.update(self.scope_hierarchy[scope])
# Check if required scope is present
if required_scope.value not in expanded_scopes:
return {
"allowed": False,
"reason": f"Missing required scope: {required_scope.value}",
"required": required_scope.value,
"available": list(expanded_scopes)
}
# Check resource-specific policies
if resource and resource in self.resource_policies:
policy_result = self._evaluate_resource_policy(
resource, user_scopes, context
)
if not policy_result["allowed"]:
return policy_result
return {
"allowed": True,
"scope": required_scope.value
}
def _evaluate_resource_policy(
self,
resource: str,
user_scopes: List[str],
context: Dict
) -> Dict:
"""Evaluate resource-specific policy."""
policy = self.resource_policies.get(resource)
if not policy:
return {"allowed": True}
# Check conditions
for condition in policy.get("conditions", []):
if not self._evaluate_condition(condition, context):
return {
"allowed": False,
"reason": f"Condition not met: {condition['description']}"
}
return {"allowed": True}
def _evaluate_condition(self, condition: Dict, context: Dict) -> bool:
"""Evaluate a single policy condition."""
condition_type = condition.get("type")
if condition_type == "time_window":
# Check if request is within allowed time window
from datetime import datetime
now = datetime.utcnow().hour
start = condition.get("start_hour", 0)
end = condition.get("end_hour", 24)
return start <= now < end
elif condition_type == "ip_range":
# Check if request IP is in allowed range
import ipaddress
client_ip = context.get("client_ip")
allowed_ranges = condition.get("ranges", [])
for range_str in allowed_ranges:
if ipaddress.ip_address(client_ip) in ipaddress.ip_network(range_str):
return True
return False
elif condition_type == "model_access":
# Check if user can access specific model
requested_model = context.get("model")
allowed_models = condition.get("models", [])
return requested_model in allowed_models
return True
def require_scope(scope: AIScope):
"""Decorator to require specific scope for endpoint."""
def decorator(func):
@wraps(func)
async def wrapper(request, *args, **kwargs):
# Get user scopes from request
user_scopes = request.state.user_scopes
# Check permission
auth_manager = AuthorizationManager()
result = auth_manager.check_permission(
user_scopes=user_scopes,
required_scope=scope,
context={
"client_ip": request.client.host,
"model": request.json.get("model")
}
)
if not result["allowed"]:
from fastapi import HTTPException
raise HTTPException(
status_code=403,
detail=result["reason"]
)
return await func(request, *args, **kwargs)
return wrapper
return decoratorRate Limiting
Multi-Tier Rate Limiter
# rate_limiting.py
from dataclasses import dataclass
from typing import Dict, Optional
from datetime import datetime, timedelta
import asyncio
@dataclass
class RateLimitTier:
"""Rate limit tier configuration."""
name: str
requests_per_minute: int
requests_per_day: int
tokens_per_minute: int
tokens_per_day: int
concurrent_requests: int
burst_multiplier: float
class AIRateLimiter:
"""Rate limiter for AI API requests."""
TIERS = {
"free": RateLimitTier(
name="free",
requests_per_minute=3,
requests_per_day=100,
tokens_per_minute=10000,
tokens_per_day=100000,
concurrent_requests=1,
burst_multiplier=1.0
),
"standard": RateLimitTier(
name="standard",
requests_per_minute=60,
requests_per_day=10000,
tokens_per_minute=60000,
tokens_per_day=1000000,
concurrent_requests=5,
burst_multiplier=1.5
),
"professional": RateLimitTier(
name="professional",
requests_per_minute=300,
requests_per_day=50000,
tokens_per_minute=300000,
tokens_per_day=5000000,
concurrent_requests=20,
burst_multiplier=2.0
),
"enterprise": RateLimitTier(
name="enterprise",
requests_per_minute=1000,
requests_per_day=None, # Unlimited
tokens_per_minute=1000000,
tokens_per_day=None, # Unlimited
concurrent_requests=100,
burst_multiplier=3.0
)
}
def __init__(self, redis_client):
self.redis = redis_client
async def check_rate_limit(
self,
organization_id: str,
tier_name: str,
estimated_tokens: int = 0
) -> Dict:
"""Check if request is within rate limits."""
tier = self.TIERS.get(tier_name, self.TIERS["free"])
now = datetime.utcnow()
# Keys for different rate limit windows
minute_key = f"ratelimit:{organization_id}:minute:{now.strftime('%Y%m%d%H%M')}"
day_key = f"ratelimit:{organization_id}:day:{now.strftime('%Y%m%d')}"
token_minute_key = f"ratelimit:{organization_id}:tokens:minute:{now.strftime('%Y%m%d%H%M')}"
token_day_key = f"ratelimit:{organization_id}:tokens:day:{now.strftime('%Y%m%d')}"
concurrent_key = f"ratelimit:{organization_id}:concurrent"
# Get current counts
pipe = self.redis.pipeline()
pipe.get(minute_key)
pipe.get(day_key)
pipe.get(token_minute_key)
pipe.get(token_day_key)
pipe.get(concurrent_key)
results = await pipe.execute()
minute_count = int(results[0] or 0)
day_count = int(results[1] or 0)
token_minute_count = int(results[2] or 0)
token_day_count = int(results[3] or 0)
concurrent_count = int(results[4] or 0)
# Calculate burst allowance
burst_rpm = int(tier.requests_per_minute * tier.burst_multiplier)
# Check limits
if minute_count >= burst_rpm:
return self._rate_limit_response(
"requests_per_minute",
tier.requests_per_minute,
60
)
if tier.requests_per_day and day_count >= tier.requests_per_day:
seconds_until_reset = self._seconds_until_day_reset()
return self._rate_limit_response(
"requests_per_day",
tier.requests_per_day,
seconds_until_reset
)
if token_minute_count + estimated_tokens > tier.tokens_per_minute:
return self._rate_limit_response(
"tokens_per_minute",
tier.tokens_per_minute,
60
)
if tier.tokens_per_day and token_day_count + estimated_tokens > tier.tokens_per_day:
seconds_until_reset = self._seconds_until_day_reset()
return self._rate_limit_response(
"tokens_per_day",
tier.tokens_per_day,
seconds_until_reset
)
if concurrent_count >= tier.concurrent_requests:
return self._rate_limit_response(
"concurrent_requests",
tier.concurrent_requests,
5 # Retry after 5 seconds
)
return {
"allowed": True,
"tier": tier_name,
"remaining": {
"requests_minute": burst_rpm - minute_count - 1,
"requests_day": (tier.requests_per_day - day_count - 1) if tier.requests_per_day else None,
"tokens_minute": tier.tokens_per_minute - token_minute_count - estimated_tokens,
"tokens_day": (tier.tokens_per_day - token_day_count - estimated_tokens) if tier.tokens_per_day else None
}
}
async def record_request(
self,
organization_id: str,
tokens_used: int
):
"""Record request for rate limiting."""
now = datetime.utcnow()
minute_key = f"ratelimit:{organization_id}:minute:{now.strftime('%Y%m%d%H%M')}"
day_key = f"ratelimit:{organization_id}:day:{now.strftime('%Y%m%d')}"
token_minute_key = f"ratelimit:{organization_id}:tokens:minute:{now.strftime('%Y%m%d%H%M')}"
token_day_key = f"ratelimit:{organization_id}:tokens:day:{now.strftime('%Y%m%d')}"
pipe = self.redis.pipeline()
pipe.incr(minute_key)
pipe.expire(minute_key, 120) # 2 minute TTL
pipe.incr(day_key)
pipe.expire(day_key, 90000) # 25 hour TTL
pipe.incrby(token_minute_key, tokens_used)
pipe.expire(token_minute_key, 120)
pipe.incrby(token_day_key, tokens_used)
pipe.expire(token_day_key, 90000)
await pipe.execute()
async def acquire_concurrent_slot(self, organization_id: str) -> bool:
"""Acquire concurrent request slot."""
key = f"ratelimit:{organization_id}:concurrent"
result = await self.redis.incr(key)
await self.redis.expire(key, 300) # 5 minute TTL
return True
async def release_concurrent_slot(self, organization_id: str):
"""Release concurrent request slot."""
key = f"ratelimit:{organization_id}:concurrent"
await self.redis.decr(key)
def _rate_limit_response(
self,
limit_type: str,
limit: int,
retry_after: int
) -> Dict:
"""Generate rate limit response."""
return {
"allowed": False,
"error": "rate_limit_exceeded",
"limit_type": limit_type,
"limit": limit,
"retry_after": retry_after,
"message": f"Rate limit exceeded for {limit_type}. Retry after {retry_after} seconds."
}
def _seconds_until_day_reset(self) -> int:
"""Calculate seconds until midnight UTC."""
now = datetime.utcnow()
tomorrow = now.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1)
return int((tomorrow - now).total_seconds())Request Validation
AI-Specific Request Validation
# request_validation.py
from dataclasses import dataclass
from typing import List, Dict, Optional, Any
from enum import Enum
import re
class ValidationError(Exception):
"""Validation error with details."""
def __init__(self, field: str, message: str, code: str):
self.field = field
self.message = message
self.code = code
super().__init__(message)
class AIRequestValidator:
"""Validate AI API requests."""
# Content policy patterns
BLOCKED_PATTERNS = [
r'ignore\s+previous\s+instructions',
r'you\s+are\s+now\s+',
r'act\s+as\s+(if\s+)?',
r'pretend\s+to\s+be',
r'system\s*:\s*',
]
MAX_PROMPT_LENGTH = 32000
MAX_MESSAGES = 100
def __init__(self, config: Optional[Dict] = None):
self.config = config or {}
self.blocked_patterns = [
re.compile(p, re.IGNORECASE)
for p in self.BLOCKED_PATTERNS
]
def validate_completion_request(self, request: Dict) -> Dict:
"""Validate chat/completion request."""
errors = []
# Validate model
if "model" not in request:
errors.append(ValidationError("model", "Model is required", "missing_field"))
else:
model_error = self._validate_model(request["model"])
if model_error:
errors.append(model_error)
# Validate messages
if "messages" in request:
message_errors = self._validate_messages(request["messages"])
errors.extend(message_errors)
elif "prompt" in request:
prompt_errors = self._validate_prompt(request["prompt"])
errors.extend(prompt_errors)
else:
errors.append(ValidationError(
"messages",
"Either messages or prompt is required",
"missing_field"
))
# Validate parameters
if "temperature" in request:
if not 0 <= request["temperature"] <= 2:
errors.append(ValidationError(
"temperature",
"Temperature must be between 0 and 2",
"out_of_range"
))
if "max_tokens" in request:
if not 1 <= request["max_tokens"] <= 128000:
errors.append(ValidationError(
"max_tokens",
"max_tokens must be between 1 and 128000",
"out_of_range"
))
if errors:
return {
"valid": False,
"errors": [
{"field": e.field, "message": e.message, "code": e.code}
for e in errors
]
}
return {"valid": True}
def _validate_model(self, model: str) -> Optional[ValidationError]:
"""Validate model name."""
allowed_models = self.config.get("allowed_models", [
"gpt-4",
"gpt-4-turbo",
"gpt-3.5-turbo",
"claude-3-opus",
"claude-3-sonnet"
])
if model not in allowed_models:
return ValidationError(
"model",
f"Model '{model}' is not available",
"invalid_model"
)
return None
def _validate_messages(self, messages: List[Dict]) -> List[ValidationError]:
"""Validate chat messages."""
errors = []
if not isinstance(messages, list):
return [ValidationError("messages", "Messages must be an array", "invalid_type")]
if len(messages) > self.MAX_MESSAGES:
errors.append(ValidationError(
"messages",
f"Maximum {self.MAX_MESSAGES} messages allowed",
"too_many_messages"
))
for i, message in enumerate(messages):
# Check required fields
if "role" not in message:
errors.append(ValidationError(
f"messages[{i}].role",
"Role is required",
"missing_field"
))
if "content" not in message:
errors.append(ValidationError(
f"messages[{i}].content",
"Content is required",
"missing_field"
))
continue
# Check role validity
valid_roles = ["system", "user", "assistant", "function"]
if message.get("role") not in valid_roles:
errors.append(ValidationError(
f"messages[{i}].role",
f"Invalid role. Must be one of: {valid_roles}",
"invalid_role"
))
# Check content length
content = message.get("content", "")
if len(content) > self.MAX_PROMPT_LENGTH:
errors.append(ValidationError(
f"messages[{i}].content",
f"Content exceeds maximum length of {self.MAX_PROMPT_LENGTH}",
"content_too_long"
))
# Check for blocked patterns
blocked = self._check_blocked_patterns(content)
if blocked:
errors.append(ValidationError(
f"messages[{i}].content",
"Content contains blocked patterns",
"blocked_content"
))
return errors
def _validate_prompt(self, prompt: str) -> List[ValidationError]:
"""Validate prompt string."""
errors = []
if not isinstance(prompt, str):
return [ValidationError("prompt", "Prompt must be a string", "invalid_type")]
if len(prompt) > self.MAX_PROMPT_LENGTH:
errors.append(ValidationError(
"prompt",
f"Prompt exceeds maximum length of {self.MAX_PROMPT_LENGTH}",
"content_too_long"
))
if self._check_blocked_patterns(prompt):
errors.append(ValidationError(
"prompt",
"Prompt contains blocked patterns",
"blocked_content"
))
return errors
def _check_blocked_patterns(self, content: str) -> bool:
"""Check if content contains blocked patterns."""
for pattern in self.blocked_patterns:
if pattern.search(content):
return True
return FalseSecurity Middleware
Complete API Security Pipeline
# security_middleware.py
from fastapi import FastAPI, Request, HTTPException
from fastapi.middleware.base import BaseHTTPMiddleware
import time
class AISecurityMiddleware(BaseHTTPMiddleware):
"""Complete security middleware for AI API."""
def __init__(self, app: FastAPI, config: Dict):
super().__init__(app)
self.api_key_manager = APIKeyManager(config["key_store"])
self.auth_manager = AuthorizationManager()
self.rate_limiter = AIRateLimiter(config["redis"])
self.request_validator = AIRequestValidator(config)
async def dispatch(self, request: Request, call_next):
start_time = time.time()
# Skip health check endpoints
if request.url.path in ["/health", "/ready"]:
return await call_next(request)
try:
# 1. Authenticate
auth_result = await self._authenticate(request)
if not auth_result["valid"]:
raise HTTPException(status_code=401, detail=auth_result["error"])
# Store auth info in request state
request.state.organization_id = auth_result["organization_id"]
request.state.user_scopes = auth_result["scopes"]
request.state.rate_limit_tier = auth_result["rate_limit_tier"]
# 2. Check rate limits
rate_result = await self.rate_limiter.check_rate_limit(
organization_id=auth_result["organization_id"],
tier_name=auth_result["rate_limit_tier"],
estimated_tokens=self._estimate_tokens(request)
)
if not rate_result["allowed"]:
raise HTTPException(
status_code=429,
detail=rate_result["message"],
headers={
"Retry-After": str(rate_result["retry_after"]),
"X-RateLimit-Limit": str(rate_result.get("limit", "")),
"X-RateLimit-Reset": str(rate_result.get("retry_after", ""))
}
)
# 3. Acquire concurrent slot
await self.rate_limiter.acquire_concurrent_slot(
auth_result["organization_id"]
)
try:
# 4. Validate request
if request.method == "POST":
body = await request.json()
validation = self.request_validator.validate_completion_request(body)
if not validation["valid"]:
raise HTTPException(
status_code=400,
detail={"errors": validation["errors"]}
)
# 5. Process request
response = await call_next(request)
# 6. Record usage
duration = time.time() - start_time
await self._record_usage(request, response, duration)
# Add rate limit headers
response.headers["X-RateLimit-Remaining"] = str(
rate_result.get("remaining", {}).get("requests_minute", "")
)
return response
finally:
# Release concurrent slot
await self.rate_limiter.release_concurrent_slot(
auth_result["organization_id"]
)
except HTTPException:
raise
except Exception as e:
# Log error
raise HTTPException(status_code=500, detail="Internal server error")
async def _authenticate(self, request: Request) -> Dict:
"""Authenticate request."""
auth_header = request.headers.get("Authorization")
if not auth_header:
return {"valid": False, "error": "Missing authorization header"}
if auth_header.startswith("Bearer "):
# API key authentication
api_key = auth_header[7:]
return self.api_key_manager.validate_key(api_key)
return {"valid": False, "error": "Invalid authorization format"}
def _estimate_tokens(self, request: Request) -> int:
"""Estimate tokens for rate limiting."""
# Rough estimation based on request size
return 1000 # Default estimate
async def _record_usage(self, request: Request, response, duration: float):
"""Record API usage."""
# Implementation for usage tracking
passConclusion
Securing AI APIs requires comprehensive measures:
- Strong Authentication - API keys with rotation and JWT tokens
- Fine-Grained Authorization - Scope-based access control
- Intelligent Rate Limiting - Multi-tier limits with burst handling
- Request Validation - Content policy enforcement and input validation
- Complete Pipeline - Middleware integrating all security layers
By implementing these security measures, you can protect your AI APIs from abuse while providing a reliable service to legitimate users.